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Decomposition

* Decompose the work units & data units into
many pieces
— Cores/Nodes/..
* Not so hard: we do (over) decomposition
anyway
— Multi-block and AMR on structured meshes
— Unstructured mesh partitions
— N-body tree code ‘leaves’
— Blocked linear algebra



Task/Object Placement

* Those pieces have to go somewhere

* Nalve reasons:
— Matching (range of) indices
— Easy to compute ID<->place mapping

 Good reasons: (e.g.)
— Load balance
— Communication locality on core/node
— Communication locality over network
— Workload affinity for hardware type



Task/Object Movement

* |sthe chosen placement the best possible?
 Can you change it?

— Without restarting the application?
e Why?

— Load not as predicted (or assumed)

— Load changed

— Hardware performance changed(?!)
— Part of hardware failed



Asynchronous Execution

* Work shouldn’t have to ‘wait its turn’
* Components should be willing to share

* |l.e., Composition of independent tasks
— Steps of a parallel algorithm
— Multi-module and multi-physics

— Using all hardware resources, all the time



Missing Optimizations

e Second-order placement effects
* Load balancing frequency

* Dynamic critical paths

* Energy usage

Why do it all by yourself, in every app?



Instantiations of

Charm++
— Including Adaptive MPI

KAAPI
HPX
StarPU
OmpSs
ParSEC

these ideas

CnC
Chapel
X10

Every AMR framework
— Especially Uintah

ProActive
FG-MPI
MPC



Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set
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NAMD: Biomolecular Simulations

Long-term collaboration
(1994-now) with
K. Schulten

Over 70,000 users

Scaled to top US
supercomputers

2002 Gordon Bell award
2012 Fernbach award
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Science cover article:
Determination of HIV capsid structure
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NAMD on Petascale Machines (2fs timestep with PME)

30 21M atoms
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NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and Mira IBM Blue
Gene/Q for 21M and 224M atom benchmarks



Time Profile of ApoAl on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile
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Timeline of ApoAl on POWER7 PERCS

230us

In Microseconds

13,482,630 = 19482670 19 482 710 19 482 750 19 4 482 330 13,482,870 : 13,482,910 13,482,350
] ||

l = ] - 1
[ ] n
1 W ﬁ :

v

_MWW e

MH#HMHMWNM HHP AT R EE H

H #H i’ HHHHI Ao ==

IR ——— :- ] [F-.“::\l‘ | IE*II 00000 IMMW

o et ) |
m# R v

Hﬂﬂﬂﬂ‘i | g

13



EpiSimdemics

Simulating contagion over dynamic networks
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Conversion to Charm++

* Original in MPI, scaling failed at 512 cores

* Headline features:
— Asynchronous reductions
— Easy decomposition experiments
— Streaming all-to-all

— Composition - split mid-run for multiple scenarios,
overlap on full job partition



Load distribution (vulcan)

RR Gp .Z BR Zp QP
splitLoc splitLoc | splitLoc | splitLoc

(1.755 s) 1 (1.583 s) (1.222 s) (0.438 s) (0.369 s){(0.368 S}

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

@ Blue: person computation X-axis: Time Y-axis: Processor

@ Red: receiver's msg handling Timeline of an iteration from sampled subset of 332
@ Orange: location computation cores of total 4K using Michigan data on Vulcan
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Strong scaling performance with the largest data set
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XEG6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic
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ChaNGa: Cosmology Simulation

Collaboration with
Tom Quinn at UW

* Tree: Represents
particle distribution

 TreePiece: object/
chares containing
particles



Multiple time-stepping!

* Our scientist collaborators suggest an algorithmic
optimization:
— Don’t move slow-moving particles every step
* j.e. don’t calculate forces on them either

— In fact, make many (say 5) categories (rungs) of
particles based on their velocities
— Rung sequence (with 5 rungs)

«4342434143424340
* Rung 0: all particles, Rung 4: fastest-moving particles

— Each tree-piece object now presents a different load
when different “rungs” are being calculated



Multiple time-stepping!

Load (for the same object) changes across rungs
— Yet, there is persistence within the same rung!

— So, specialized phase-aware balancers were developed
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Multi-stepping tradeoff

* Parallel efficiency is lower,
but performance is much better

Time per Step (s)
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Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set



MPI Interoperability

Make calls between MPI and Charm++ code

Implement each parallel kernel in the most
suitable model

Code shares process address space

— Can pass plain pointers across interface

Control transfer between Charm++ and MPI

analogous to MPI code calling external
libraries (e.g. ParMETIS, FFTW, PETSc, Hypre)



MPI Interoperability Modes

(c) Combined Sharing
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MPI Interoperability Code

* Includempi-interoperate.h

e Add an interface function callable from the
main program

void HelloStart(int elems)
if(CkMyPe() == 0) {
CProxy_MainHello mainhello =
CProxy_MainHello::ckNew(elems);

}
StartCharmScheduler();

}



MPI Interoperabilty: Control Flow

Begin execution at user main

Perform MPI initialization and application initialization
Create a communicator for Charm++

Initialize Charm++

for (as many times needed)
— perform MPI based communication and application work
— invoke Charm++ code

Exit Charm++
Exit MPI



MPI Interoperability: Example Code

MPI_Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm-+
MPI_Comm_split(MPI_COMM_WORLD, myRank % 2, myRank, newComm);

CharmLiblnit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm+ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets
CharmLibExit(); //destroy Charm--




MPI Interoperability: Use Cases

* Demonstrated in HPC Challenge submission
with FFT benchmark

* Chombo AMR framework using parallel
sorting library from

— Highly Scalable Parallel Sorting by Edgar
Solomonik and Laxmikant Kale (IPDPS, 2009)

e EpiSimdemics using MPI-10
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Development: Portability

Compilers: GNU, Intel, IBM, Clang, Cray, PG
Network: BlueGene *, Cray *, IB Verbs, TCP/IP
CPU Architectures: x86, POWER, BG *, ARM
OS: Linux, Mac, Windows, BG *



Development: Stability

Nightly cross-platform testing

Thorough test coverage

Continuous Integration against applications
Code Review of every commit

RTS runs clean under Valgrind, ASan, & UBSan
SMP build is mostly ThreadSanitizer clean



Development: Compatibility

* Frivolous APl changes avoided

* NAMD always tested for compatibility,
forward and backward
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Features & Ecosystem

Automatic offline & online fault tolerance
— Checkpoint in one line, transparent restart, any number of processors

Plethora of LB strategies
— Easy to plug in your own
Scalable tools
— CharmDebug parallel debugger
— LiveViz online visualization client
— Projections performance analysis tool
Resource Optimizations
— In-job power & energy:
— Job size tuning via shrink/expand:
— Across-job power & energy: scheduling with power constraints
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Questions?



